Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 12 de 12
Filter
1.
Pharmaceutics ; 15(5)2023 May 22.
Article in English | MEDLINE | ID: covidwho-20244089

ABSTRACT

With the growing demand for the development of intranasal (IN) products, such as nasal vaccines, which has been especially highlighted during the COVID-19 pandemic, the lack of novel technologies to accurately test the safety and effectiveness of IN products in vitro so that they can be delivered promptly to the market is critically acknowledged. There have been attempts to manufacture anatomically relevant 3D replicas of the human nasal cavity for in vitro IN drug tests, and a couple of organ-on-chip (OoC) models, which mimic some key features of the nasal mucosa, have been proposed. However, these models are still in their infancy, and have not completely recapitulated the critical characteristics of the human nasal mucosa, including its biological interactions with other organs, to provide a reliable platform for preclinical IN drug tests. While the promising potential of OoCs for drug testing and development is being extensively investigated in recent research, the applicability of this technology for IN drug tests has barely been explored. This review aims to highlight the importance of using OoC models for in vitro IN drug tests and their potential applications in IN drug development by covering the background information on the wide usage of IN drugs and their common side effects where some classical examples of each area are pointed out. Specifically, this review focuses on the major challenges of developing advanced OoC technology and discusses the need to mimic the physiological and anatomical features of the nasal cavity and nasal mucosa, the performance of relevant drug safety assays, as well as the fabrication and operational aspects, with the ultimate goal to highlight the much-needed consensus, to converge the effort of the research community in this area of work.

2.
Front Immunol ; 13: 999693, 2022.
Article in English | MEDLINE | ID: covidwho-2326746

ABSTRACT

Introduction: Humoral immunity after SARS-CoV-2 vaccination has been extensively investigated in blood. Aim of this study was to develop an ELISA method in order to determine the prevalence of IgG and IgA SARS-CoV-2 domain 1 spike-protein (S) specific antibodies (Abs) in buccal and nasal mucosal surfaces of vaccinees. Methods: To this end, we analyzed 69 individuals who received their first vaccine dose between February and July 2021. Vaccines administered were BNT162b2, mRNA-1273 or ChAdOx1-nCoV-19. Detection of IgG and IgA Abs was performed using commercial ELISA kits for both blood and swab samples after protocol modification for the latter. Results: Anti-spike IgG and IgA Abs in the buccal and/or nasal swabs were detectable in >81% of the study subjects after the second dose. The IgG measurements in buccal swabs appeared to correlate in a more consistent way with the respective measurements in blood with a correlation coefficient of r=0.74. It is of note that IgA Abs appeared to be significantly more prevalent in the nasal compared to the buccal mucosa. Optimal selection of the assay cut-off for the IgG antibody detection in buccal swabs conferred a sensitivity of 91.8% and a specificity of 100%. Last, individuals vaccinated with mRNA-based vaccines exhibited higher antibody levels in both blood and mucosal surfaces compared to those receiving ChAdOx1-nCoV-19 confirming previously reported results. Conclusion: In conclusion, our findings show a differential prevalence of anti-S Abs on mucosal surfaces after vaccination for SARS-CoV-2, while they also set the basis for potential future use of IgG antibody detection in buccal swabs for extended immunity screening in large populations.


Subject(s)
COVID-19 , SARS-CoV-2 , Humans , BNT162 Vaccine , COVID-19 Vaccines , COVID-19/prevention & control , Nasal Mucosa , Vaccination , Immunoglobulin A , Immunoglobulin G
3.
Viruses ; 15(4)2023 03 31.
Article in English | MEDLINE | ID: covidwho-2293677

ABSTRACT

The nasal mucosa is the main gateway for entry, replication and elimination of the SARS-CoV-2 virus, the pathogen that causes severe acute respiratory syndrome (COVID-19). The presence of the virus in the epithelium causes damage to the nasal mucosa and compromises mucociliary clearance. The aim of this study was to investigate the presence of SARS-CoV-2 viral antigens in the nasal mucociliary mucosa of patients with a history of mild COVID-19 and persistent inflammatory rhinopathy. We evaluated eight adults without previous nasal diseases and with a history of COVID-19 and persistent olfactory dysfunction for more than 80 days after diagnosis of SARS-CoV-2 infection. Samples of the nasal mucosa were collected via brushing of the middle nasal concha. The detection of viral antigens was performed using immunofluorescence through confocal microscopy. Viral antigens were detected in the nasal mucosa of all patients. Persistent anosmia was observed in four patients. Our findings suggest that persistent SARS-CoV-2 antigens in the nasal mucosa of mild COVID-19 patients may lead to inflammatory rhinopathy and prolonged or relapsing anosmia. This study sheds light on the potential mechanisms underlying persistent symptoms of COVID-19 and highlights the importance of monitoring patients with persistent anosmia and nasal-related symptoms.


Subject(s)
COVID-19 , Adult , Humans , COVID-19/complications , COVID-19/diagnosis , SARS-CoV-2 , Anosmia/diagnosis , Anosmia/etiology , COVID-19 Testing , Nasal Mucosa , Antigens, Viral
4.
Cureus ; 14(9): e28796, 2022 Sep.
Article in English | MEDLINE | ID: covidwho-2164169

ABSTRACT

Background Favipiravir was widely used to treat coronavirus disease 2019 (COVID-19) early in the pandemic. Later, many reports began to be published about the side effects of favipiravir on different tissues. However, the side effects of favipiravir on the oral and nasal mucosa remain unknown. This experimental study aimed to evaluate the pathological effects of favipiravir on the oral-nasal mucosa and investigate whether vitamin C (Vit C) reduces these lesions in old and young rats. Methodology A total of 100 rats were used for this study. The rats were administered favipiravir (20 mg/kg and 100 mg/kg) and Vit C (150 mg/kg/day) for 14 days. At the end of the study, rats were euthanatized, and oral-nasal mucosal histopathological changes were evaluated. Nuclear factor kappa-ligand (RANKL) and caspase-3 expressions were immunohistochemically examined. Results Favipiravir caused severe lesions in old rats compared to young, and the severity of the lesions increased with the dosage. Severe hyperemia and erosive-ulcerative lesions were observed in the oral-nasal mucosa. In addition, increased RANKL and caspase-3 expressions were observed in a dose-dependent manner. In both young and old groups, Vit C treatment showed decreased caspase-3 and RANKL expression; a more prominent decrease was seen in young rats. Conclusions This study showed that favipiravir could cause histopathological lesions in the oral and nasal mucosa. However, the administration of Vit C with favipiravir can provide a protective effect against this damage. The curative effect of Vit C was more pronounced in young rats and at low doses.

5.
Int J Infect Dis ; 124: 199-205, 2022 Nov.
Article in English | MEDLINE | ID: covidwho-2086288

ABSTRACT

OBJECTIVES: We aimed to validate a newly developed antigen-detecting rapid diagnostic test (Ag-RDT) for SARS-CoV-2 using anterior nasal specimens. METHODS: Between February 12 and September 30, 2021, 16 patients (age range, <1 month-76 years) were enrolled, and samples were collected simultaneously from anterior nasal and nasopharyngeal sites continuously during hospitalization. The primary end points were the diagnostic accuracy of the Ag-RDT and utility of anterior nasal specimens. RESULTS: In total, 226 sets of paired samples were obtained. In 88.2% of specimens, the viral load was high at the nasopharyngeal site. The mean cycle threshold values for the anterior nasal and nasopharyngeal sites were 32.4 and 29.9, respectively. Using the real-time polymerase chain reaction results as a reference, the Ag-RDT showed a 100% sensitivity up to day 6 of the illness, using specimens with moderate or high viral load (cycle threshold <30) from either site. From day 7, the sensitivity was 70.4-90.6% and 83.9-84.6% for the anterior nasal and nasopharyngeal sites, respectively. The specificity remained at 100%. CONCLUSION: Our novel Ag-RDT meets the World Health Organization criteria and provides stable sensitivity and specificity and accurate results with anterior nasal specimens.


Subject(s)
COVID-19 , SARS-CoV-2 , Humans , Infant , Nasal Cavity , COVID-19/diagnosis , Nasopharynx , Sensitivity and Specificity , Antigens, Viral
6.
Viruses ; 14(8)2022 07 23.
Article in English | MEDLINE | ID: covidwho-1957457

ABSTRACT

Reinfection risk is a great concern with regard to the COVID-19 pandemic because a large proportion of the population has recovered from an initial infection, and previous reports found that primary exposure to SARS-CoV-2 protects against reinfection in rhesus macaques without viral presence and pathological injury; however, a high possibility for reinfection at the current stage of the pandemic has been proven. We found the reinfection of SARS-CoV-2 in Syrian hamsters with continuous viral shedding in the upper respiratory tracts and few injuries in the lung, and nasal mucosa was exploited by SARS-CoV-2 for replication and shedding during reinfection; meanwhile, no viral replication or enhanced damage was observed in the lower respiratory tracts. Consistent with the mild phenotype in the reinfection, increases in mRNA levels in cytokines and chemokines in the nasal mucosa but only slight increases in the lung were found. Notably, the high levels of neutralizing antibodies in serum could not prevent reinfection in hamsters but may play roles in benefitting the lung recovery and symptom relief of COVID-19. In summary, Syrian hamsters could be reinfected by SARS-CoV-2 with mild symptoms but with obvious viral shedding and replication, and both convalescent and vaccinated patients should be wary of the transmission and reinfection of SARS-CoV-2.


Subject(s)
COVID-19 , SARS-CoV-2 , Animals , Cricetinae , Disease Models, Animal , Humans , Macaca mulatta , Mesocricetus , Nasal Mucosa , Pandemics , Reinfection
8.
Eur J Immunol ; 52(8): 1308-1320, 2022 08.
Article in English | MEDLINE | ID: covidwho-1825936

ABSTRACT

Human nasal mucosa is susceptible to severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection and serves as a reservoir for viral replication before spreading to other organs (e.g. the lung and brain) and transmission to other individuals. Chronic rhinosinusitis (CRS) is a common respiratory tract disease and there is evidence suggesting that susceptibility to SARS-CoV-2 infection differs between the two known subtypes, eosinophilic CRS and non-ECRS (NECRS). However, the mechanism of SARS-CoV-2 infection in the human nasal mucosa and its association with CRS has not been experimentally validated. In this study, we investigated whether the human nasal mucosa is susceptible to SARS-CoV-2 infection and how different endotypes of CRS impact on viral infection and progression. Primary human nasal mucosa tissue culture revealed highly efficient SARS-CoV-2 viral infection and production, with particularly high susceptibility in the NECRS group. The gene expression differences suggested that human nasal mucosa is highly susceptible to SARS-CoV-2 infection, presumably due to an increase in ACE2-expressing cells and a deficiency in antiviral immune response, especially for NECRS. Importantly, patients with NECRS may be at a particularly high risk of viral infection and transmission, and therefore, close monitoring should be considered.


Subject(s)
COVID-19 , Rhinitis , Sinusitis , Chronic Disease , Humans , Nasal Mucosa/metabolism , Rhinitis/complications , Rhinitis/metabolism , SARS-CoV-2 , Sinusitis/complications , Sinusitis/metabolism
9.
J Clin Med ; 10(18)2021 Sep 12.
Article in English | MEDLINE | ID: covidwho-1409871

ABSTRACT

(1) Background: Chronic rhinosinusitis with nasal polyps (CRSwNP) is one of the most studied rhinological disorders. Modifications of the respiratory nasal mucosa in COVID-19 patients are so far unknown. This paper presents a comparative morphological characterization of the respiratory nasal mucosa in CRSwNP versus COVID-19 and tissue interleukin (IL)-33 concentration. (2) Methods: We analyzed CRSwNP and COVID-19 samples through histopathology, scanning and transmission electron microscopy and performed proteomic determination of IL-33. (3) Results: Histopathologically, stromal edema (p < 0.0001) and basal membrane thickening (p = 0.0768) were found more frequently in CRSwNP than in COVID-19. Inflammatory infiltrate was mainly eosinophil-dominant in CRSwNP and lymphocyte-dominant in COVID-19 (p = 0.3666). A viral cytopathic effect was identified in COVID-19. Scanning electron microscopy detected biofilms only in CRSwNP, while most COVID-19 samples showed microbial aggregates (p = 0.0148) and immune cells (p = 0.1452). Transmission electron microscopy of CRSwNP samples identified biofilms, mucous cell hyperplasia (p = 0.0011), eosinophils, fibrocytes, mastocytes, and collagen fibers. Extracellular suggestive structures for SARS-CoV-2 and multiple Golgi apparatus in epithelial cells were detected in COVID-19 samples. The tissue IL-33 concentration in CRSwNP (210.0 pg/7 µg total protein) was higher than in COVID-19 (52.77 pg/7 µg total protein) (p < 0.0001), also suggesting a different inflammatory pattern. (4) Conclusions: The inflammatory pattern is different in each of these disorders. Results suggested the presence of nasal dysbiosis in both conditions, which could be a determining factor in CRSwNP and a secondary factor in COVID-19.

10.
Cell ; 184(18): 4713-4733.e22, 2021 09 02.
Article in English | MEDLINE | ID: covidwho-1343153

ABSTRACT

SARS-CoV-2 infection can cause severe respiratory COVID-19. However, many individuals present with isolated upper respiratory symptoms, suggesting potential to constrain viral pathology to the nasopharynx. Which cells SARS-CoV-2 primarily targets and how infection influences the respiratory epithelium remains incompletely understood. We performed scRNA-seq on nasopharyngeal swabs from 58 healthy and COVID-19 participants. During COVID-19, we observe expansion of secretory, loss of ciliated, and epithelial cell repopulation via deuterosomal cell expansion. In mild and moderate COVID-19, epithelial cells express anti-viral/interferon-responsive genes, while cells in severe COVID-19 have muted anti-viral responses despite equivalent viral loads. SARS-CoV-2 RNA+ host-target cells are highly heterogenous, including developing ciliated, interferon-responsive ciliated, AZGP1high goblet, and KRT13+ "hillock"-like cells, and we identify genes associated with susceptibility, resistance, or infection response. Our study defines protective and detrimental responses to SARS-CoV-2, the direct viral targets of infection, and suggests that failed nasal epithelial anti-viral immunity may underlie and precede severe COVID-19.


Subject(s)
COVID-19/immunology , COVID-19/virology , Immunity , SARS-CoV-2/physiology , Severity of Illness Index , Adult , Aged , Bystander Effect , COVID-19/genetics , Cohort Studies , Female , Humans , Male , Middle Aged , Nasopharynx/pathology , Nasopharynx/virology , RNA, Viral/analysis , RNA, Viral/genetics , Respiratory Mucosa/pathology , Respiratory Mucosa/virology , Transcription, Genetic , Viral Load
11.
J Virol ; 95(14): e0013021, 2021 06 24.
Article in English | MEDLINE | ID: covidwho-1203943

ABSTRACT

The nasal mucosa constitutes the primary entry site for respiratory viruses, including severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). While the imbalanced innate immune response of end-stage coronavirus disease 2019 (COVID-19) has been extensively studied, the earliest stages of SARS-CoV-2 infection at the mucosal entry site have remained unexplored. Here, we employed SARS-CoV-2 and influenza virus infection in native multi-cell-type human nasal turbinate and lung tissues ex vivo, coupled with genome-wide transcriptional analysis, to investigate viral susceptibility and early patterns of local mucosal innate immune response in the authentic milieu of the human respiratory tract. SARS-CoV-2 productively infected the nasal turbinate tissues, predominantly targeting respiratory epithelial cells, with a rapid increase in tissue-associated viral subgenomic mRNA and secretion of infectious viral progeny. Importantly, SARS-CoV-2 infection triggered robust antiviral and inflammatory innate immune responses in the nasal mucosa. The upregulation of interferon-stimulated genes, cytokines, and chemokines, related to interferon signaling and immune-cell activation pathways, was broader than that triggered by influenza virus infection. Conversely, lung tissues exhibited a restricted innate immune response to SARS-CoV-2, with a conspicuous lack of type I and III interferon upregulation, contrasting with their vigorous innate immune response to influenza virus. Our findings reveal differential tissue-specific innate immune responses in the upper and lower respiratory tracts that are specific to SARS-CoV-2. The studies shed light on the role of the nasal mucosa in active viral transmission and immune defense, implying a window of opportunity for early interventions, whereas the restricted innate immune response in early-SARS-CoV-2-infected lung tissues could underlie the unique uncontrolled late-phase lung damage of advanced COVID-19. IMPORTANCE In order to reduce the late-phase morbidity and mortality of COVID-19, there is a need to better understand and target the earliest stages of SARS-CoV-2 infection in the human respiratory tract. Here, we have studied the initial steps of SARS-CoV-2 infection and the consequent innate immune responses within the natural multicellular complexity of human nasal mucosal and lung tissues. Comparing the global innate response patterns of nasal and lung tissues infected in parallel with SARS-CoV-2 and influenza virus, we found distinct virus-host interactions in the upper and lower respiratory tract, which could determine the outcome and unique pathogenesis of SARS-CoV-2 infection. Studies in the nasal mucosal infection model can be employed to assess the impact of viral evolutionary changes and evaluate new therapeutic and preventive measures against SARS-CoV-2 and other human respiratory pathogens.


Subject(s)
COVID-19/immunology , Immunity, Innate , Lung/immunology , Nasal Mucosa/immunology , SARS-CoV-2/immunology , Animals , COVID-19/pathology , Chlorocebus aethiops , Dogs , Humans , Influenza, Human/immunology , Influenza, Human/pathology , Lung/pathology , Madin Darby Canine Kidney Cells , Nasal Mucosa/pathology , Nasal Mucosa/virology , Organ Specificity/immunology , RNA, Messenger/immunology , RNA, Viral/immunology , Vero Cells
12.
Ir J Med Sci ; 190(3): 889-891, 2021 Aug.
Article in English | MEDLINE | ID: covidwho-871553

ABSTRACT

BACKGROUND: COVID-19 is a new disease caused by the SARS-CoV-2 virus. The olfactory dysfunction linked to COVID-19 is not associated with rhinorrhea but there is no objective evaluation. AIMS: To evaluate nasal mucosal secretion objectively in COVID-19 patients with anosmia. METHODS: Fifty-two COVID-19 patients with anosmia and 51 healthy individuals included. Anosmia was diagnosed by subjective questionnaires. Nasal Schirmer test was done to the left and the right nasal cavity separately. RESULTS: All patients had anosmia and 82.6% had gustatory dysfunction. In group 1, the mean of the nasal Schirmer test results in the right cavity was 12.4 mm, 12.01 mm in the left nasal cavity. The median wetting distance (right plus left divided by two) was calculated 12.21 mm. In group 2, the mean of the nasal Schirmer test results in the right cavity was 12.1 mm, 11.8 mm in the left nasal cavity. The median wetting distance (right plus left divided by two) was calculated11.97 mm. There was no difference between the two groups in terms of nasal schirmer. CONCLUSION: Olfactory dysfunction and gustatory dysfunction are the two of the unknown for this disease. We evaluated the nasal mucosa secretions in COVID-19 patients with anosmia objectively to evaluate if there is inflammation in the nasal mucosa. We found no difference between healthy individuals. According to our study, SARS-CoV-2 causes anosmia without causing nasal mucosal inflammation. Invasion of the olfactory bulb and central nervous system by SARS-CoV-2 may lead to anosmia in COVID-19, which may cause olfactory dysfunction.


Subject(s)
Anosmia , COVID-19 , Inflammation , Nasal Mucosa , COVID-19/complications , Humans , SARS-CoV-2 , Smell
SELECTION OF CITATIONS
SEARCH DETAIL